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Abstract. Silicon carbide often grows in the cubic phase under conditions where this is not the
most stable phase.Ab initio calculations are presented which determine the energy of a stacking
reversal at the (0001) and(000̄1) surfaces of silicon carbide, and thus whether the cubic form is
preferred in the vicinity of a free surface. In these calculations the surfaces are not reconstructed
but hydrogen terminated, and care is taken to eliminate the spurious dipole–dipole interaction
caused by the imposition of periodic boundary conditions, and also in estimating the amount of
residual ionic relaxation. These calculations do show a clear distinction of 13 meV per surface
pair between the silicon and carbon surfaces, although the results are not in complete agreement
with experiment.

1. Introduction

Silicon carbide has long been known as a polytypic substance, but forming a phase
diagram for it is difficult, for annealing is slow, different forms grow under almost identical
conditions, and small quantities of impurities have significant effects. Previous studies have
found that the cubic form grows under conditions where one of the hexagonal polytypes
is more stable. An explanation for this in terms of the energy of a stacking reversal at a
surface and based on bulk polytype energies was offered by Heineet al [1]. The present
paper extends this idea to include a distinction between the two different{0001} surfaces,
and tests the validity of applying bulk-derived parameters at a surface.

Different electronic structure calculations all place the cubic phase higher in energy than
the 4H and 6H phases at zero degrees Kelvin [2–4], and as theoretical studies also give
the cubic phase a higher phonon free energy [5], these results combine to suggest that the
cubic phase is unstable at all temperatures. Solid-state transformations of 3C have been
observed experimentally by many people including Jepps and Page [6] and Tagaiet al [7]
working in the range 1800◦C to 1900◦C. The transformations are slow, with Jepps and
Page finding that just 63% of a sample transformed after one hour at the high temperature
of 2300 ◦C [8].

The cubic phase does grow quite readily epitaxially at temperatures below 2000◦C
[9, 10]. It is important to distinguish between slightly off-axis growth, in which growth
occurs at the steps on the faces and produces more of the underlying polytype, and on-axis
growth occurring on the flat terraces themselves. It is this latter mechanism which often
produces cubic growth and which is considered in this paper.

When considering the{0001} surfaces of silicon carbide, there is a also a distinction
between the carbon-terminated and the silicon-terminated surfaces. These have different
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physical properties, most notably surface diffusion lengths differing by an order of magnitude
[11], and there are several reports of different surfaces producing different polytypes under
otherwise identical conditions [12, 13].

As growth is a non-equilibrium process, there is no fundamental reason for which SiC
should grow in its lowest-energy structure. Growth is a complicated process, and can be
approached theoretically and computationally only via simplified models. For the layered
polytypic structure of SiC, a good model is that of Heineet al [1], in which growth is
considered to be a layer-by-layer process, with each layer, whilst on the surface having the
freedom to orient itself into its most energetically favourable position, then being buried
in that position by subsequent layers without subsequent change. Naturally the lowest-
energy configuration for a surface layer under these conditions need not be the same as
that which it would take up in the bulk if subsequently allowed to anneal. Although this
model is necessarily a simplification of the growth process, it is evident that a partial layer
at a surface, or even a complete surface layer, will have greater freedom to reorient than
a layer in the bulk. Thus this model includes some of the aspects of growth, and permits
non-equilibrium phases to grow.

+1

+1

+1

−1

−1
σ

Figure 1. A diagram of the repeat unit of a simple polytype showing how SiC is formed from
layers stacked on top of each other, and that each layer can be assigned a ‘spin’,σ , of ±1. The
stacking reversal is highlighted.

As each layer in SiC can take one of two possible orientations, it is possible to assign
a ‘spin’, σ , to a layer, taking values of±1. This is shown in figure 1 where five layers
forming the repeat unit of the 15R polytype are shown. The total energy of a bulk system
can then be approximated as

E = J0N −
∑
i,n

Jnσiσi+n (1)

where the index runs over layers,J0 is the self-energy of a layer, andJn is the interaction
strength for two layers of separationn. Terms with an odd number ofσs are forbidden by
the invariance ofE under the transformationσi 7→ −σi . This form assumes no multi-layer
interactions, and is used and discussed by Heineet al [14–16], who consideredJn to be
zero forn greater than three.

This model can be used to consider the energy of a layer at a surface simply by
considering the interactions between the surface layer and the layers below it in a semi-
infinite slab. For the energy of a single layer on the surface of a cubic substrate, one would
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obtain

Es = J0− σs
∑
n

Jn (2)

whereσs = 1 if the surface layer is in the same orientation as the substrate, and−1 if it is
reversed.

This argument, used by Heineet al [1] and Chienet al [17], suggests that a cubic
substrate will continue to grow cubic if

J ∗ =
∑
n

Jn > 0 (3)

for then the surface layer has a lower energy when lying in the same orientation as the
substrate. The first few terms dominate in this sum, and Heineet al found that the inequality
holds when using values ofJn calculated from the bulk material.

+1 +1 −1 −1 +1 +1σ:
Figure 2. Two three-layer blocks. If each block represented the repeat unit of an infinite system,
the systems would be related by a translation. If each block was finite, but all of the atoms
identical, the blocks would be related by a rotation. Only in the case of distinct atoms and finite
blocks are these configurations distinct.

Not only does this analysis ignore any surface energy or surface relaxation effects, but
it has one other significant deficiency: it does not distinguish between the two types of
surface, the carbon-terminated and the silicon-terminated surfaces. Indeed, although Shaw
and Heine [16] showed that equation (1) contains all terms involving fewer than four layers
for any bulk system, and certain finite systems such as silicon or diamond, they also showed
that additional terms can arise in finite systems of low symmetry such as silicon carbide
slabs. For a simple three-layer block, such as that shown in figure 2, they showed that the
energy should be written as

E = 3J0− J1σ1σ2− J1σ2σ3− J2σ1σ3− α(σ1σ2− σ2σ3). (4)

The last term can distinguish between systems whose spins are 1, 1,−1 and−1, 1, 1. If all
of the atoms were of the same species, this pair of systems would be related by a rotation,
andα would therefore be zero. Even ifα is non-zero, it makes no contribution to the energy
of an infinite crystal as all of the terms containing it cancel. Thusα cannot be determined
from bulk calculations alone.

Therefore the present work attempts to calculateJ ∗ by considering a surface directly,
rather than extrapolating from bulk behaviour. Thus it avoids the need to consider the many
additional terms arising at surfaces of which theα term discussed above is an example.

Using recent advances in technique and computing power, it is possible to calculate the
energy changes on reversing a surface layer on a silicon carbide slab directly within the
LDA formalism. This change is simply twiceJ ∗, if α is ignored. The calculation can be
done separately on each surface in order to find any surface dependency.
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In such calculations small energy differences of very much less thankT per atom
at typical growth temperatures are significant, because a whole plane of atoms must be
switched together as a single unit, and such planes may be hundreds or thousands of atoms
across, for the energy cost of roughening such a plane is very high. The energy change on
switching such a unit will therefore be greater thankT even for very small energy changes
per atom.

2. Method

This work uses the Cambridgeab initio plane-wave LDA code called CASTEP [18], with
the exchange–correlation energy as parametrized by Perdew and Zunger [19], and norm-
conserving pseudopotentials in the Kleinman–Bylander form [20] produced following the
method of Lee [21].

(a) (b)

Figure 3. Diagrams of a stacking reversal at the (0001) surface in SiC. In (a) a wholly cubic
slab is shown, whereas in (b) the top (carbon) layer has had its orientation reversed. Hydrogen
atoms terminate both surfaces. The basic stacking structure is shown at the side of each diagram.

Calculations were performed on the SiC surfaces shown in figure 3 and on the
corresponding silicon-terminated surfaces. Thus the energies of pairs of systems, one with
and one without a stacking reversal on the surface, are being compared, and the energy
of the stacking reversal can be determined from the difference. According to the simple
layer-by-layer growth model above, the configuration with the lower energy will determine
the growth structure.

Although the unit cells used are relatively small, the computation cost is still high due
to the presence of carbon which requires a high cut-off in the plane-wave basis set. In
these calculations 560 eV was used, a 7× 7× 1 Monkhorst–Packk-point set [22], and 9̊A
of vacuum, as measured between the hydrogen nuclei. Atomic relaxation was permitted
perpendicular to the surface in the four double layers closest to the surfaces considered.

The hydrogens were placed on the surface in order to reduce the computational cost. By
saturating the surface ‘dangling bonds’ with hydrogen, the need to reconstruct the surface
is avoided. A simple 2× 1 reconstruction would not only double the cell size and thus
increase the computation involved in calculating the wavefunction at a singlek-point, but
the resultant reduction in symmetry caused by the reconstruction would also increase the
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Figure 4. Diagrams showing schematically the effect of applying periodic boundary conditions
to the potential of a cell with a dipole moment. In (a) the potential before periodic boundary
conditions are imposed is shown, in (b) the potential after they are imposed is shown, and in
(c) the use of a discontinuity in the potential to recover the form of (a) with periodic boundary
conditions is shown. The shaded regions along thez-axis indicate the positions of the SiC slabs.

number ofk-points in the irreducible Brillouin zone. The atomic relaxation would also
be complicated, for with no reconstruction the symmetry constrains the atoms to move
perpendicular to the slab only. Thus choosing to terminate the slab with hydrogen, which
is present anyway in large quantities when SiC is grown by gas decomposition, reduces the
computational cost by a factor of ten or more.

When modelling a slab with a plane-wave basis set, the requirement to impose
periodicity in the third dimension can cause difficulties, as the periodic images of the slab
interact with each other. These interactions tend to zero as the separation of the periodic
images is increased, but they do so slowly. The most slowly decaying interaction is that
caused by the dipole moment of the slab. It produces a change in the potential from one
face to the other. As the potential must be periodic, a compensating uniform electric field
is introduced automatically throughout the cell. This is shown in figure 4.

This electric field can be removed self-consistently by placing a discontinuity in the
potential in the middle of the vacuum region, as has been shown by Neugebauer and
Scheffler [23]. This gives much faster convergence of both energies and forces with respect
to vacuum size than would otherwise be the case. This correction has been described in
a more general manner by Makov and Payne [24], who considered the case of isolating a
molecule from its images in all three directions.

The pseudopotentials used were tested by calculating the lattice constants and bulk
moduli of silicon, carbon and silicon carbide. The lattice constants were reproduced to
within 11

2% of experimental values [25] and the bulk moduli to within 6% of the best
experimental values [25, 26].

In order to test the pseudopotentials further, calculations were also performed on the
main bulk polytypes of silicon carbide. The structures in these tests were not permitted
to relax, but the ideal tetrahedral bond angles and lengths were imposed. Their relative
energies as calculated are shown in table 1. These calculations used a 600 eV cut-off and
a 7× 7× 1 Monkhorst–Pack [22] mesh referred to a 12-layer supercell, and these results
are in broad agreement with previous work [3, 4].

From these results, and assuming thatJn = 0 for n > 3 in equation (1), values for
J1, J2 andJ3, and hence alsoJ ∗, can be calculated [15]. The resulting values are given in
table 2 where it can be seen that|Jn| does decrease rapidly with increasingn, andJ ∗ is
indeed positive. It is hoped to recalculate in the future the relaxation of the bulk structures
in view of the different conclusions reported by different authors [4, 15].
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Table 1. Relative energies of selected unrelaxed bulk polytypes of SiC. Units are meV/SiC pair.

Polytype Energy

2H 6.0
3C 0.0
6H −2.2
4H −2.4

Table 2. Jns from unrelaxed polytype energies. Units are meV/SiC pair.

J1 J2 J3 J ∗

3.47 −2.71 −0.47 0.29

3. Results

The energies sought are simply the energy changes on reversing a surface layer. These are
presented in table 3, both before and after atomic relaxation was permitted. It can be seen
that a reversal on the silicon face is energetically favourable, whilst this is not so on the
carbon face. These can be compared to the estimation of 2J ∗ from table 2 which yields
0.58 meV. The best comparison would be with the energy change of a reversal averaged
over the Si and C surfaces and with no relaxation, that is−0.96 meV. The averaging will
remove the affects of theα-terms discussed above, and the use of the unrelaxed geometries
is then common to the bulk and surface calculations.

Table 3. Energy changes on the reversal of a surface layer from the cubic orientation of a
(0001)-type face of SiC. Units are meV.

Relaxation C reversed Si reversed

No 3.68 −5.59

Yes 1.4 −11.7

In order to test convergence with respect to the plane-wave cut-off,k-point sampling and
number of layers of bulk, the calculation of the unrelaxed energy difference on the carbon
surface was repeated with different values of these parameters. Increasing the cut-off to
650 eV changed the energy difference by 0.05 meV, using a 9×9×2 k-point mesh produced
a 0.1 meV change, and using six layers of bulk and an extraångstr̈om of vacuum produced
a 0.01 meV change. Thus we are confident of reasonable convergence with respect to these
parameters.

Estimating the error due to the lack of complete ionic relaxation is more difficult. The
scheme used was to consider the expression

1E =
∑

T 2
n /2k. (5)

where the sum is over the region being relaxed,k is the spring constant of a typical
bond, andT is not the residual force on each atom, but rather the residual tension in an
idealized interlayer bond. Such tensions can be calculated in this simple geometry where
only relaxation perpendicular to the slab is considered, and there is a free surface. This is
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Figure 5. The relationship between the resultant forces on the layers and the tensions in interlayer
springs.

shown in figure 5, where it can be seen that starting from the free end, it is trivial to derive
the spring tensionsT given the forces on the layersF , for Tn is simply the sum of theFis
over i from zero ton− 1.

This method can be tested by applying it to the initial unrelaxed surfaces, where the
relaxation energy is approximately known from the firm lower bound given by the almost-
complete atomic relaxation performed. This comparison is given by table 4, wherek is
taken to be 18 eV̊A−2 [27].

Table 4. Energy changes on the relaxation, predicted and calculated. Units are meV.

Surface Reversal
∑
T 2
n /2k Calculated

C No 43 39
C Yes 50 42
Si No 49 35
Si Yes 51 41

Thus this bond-based estimate of the relaxation energy can be seen to give a good
estimate of the remaining relaxation, with a slight tendency to overestimation. By applying
this estimate to the relaxed geometries, it is found that all of the relaxed structures are
relaxed to within 0.2 meV of their equilibrium geometries.

4. Conclusions

These calculations show a clear distinction between the carbon and silicon surfaces, the
one having a slight preference for remaining in the cubic orientation, the other a strong
preference for reversing the stacking direction. The 1.4 meV/pair preference of the carbon
surface for remaining cubic is hardly overwhelming, although significant at the level of
the expected errors in these calculations. The 11.7 meV/pair preference for reversal of
the topmost double layer at the silicon surface is much more significant. This distinction
between the two surfaces, favouring cubic growth on the carbon surface, agrees with that
found by Lilov et al [13], but disagrees with the more recent work by Stein and Lanig [12].
The experimental literature thus does not clearly show which surface favours which polytype,
although slightly more evidence backs the results of Stein and Lanig. The major source of
error in these theoretical calculations is expected to be the omission of any consideration
of surface reconstructions.

The earlier analysis usingJ ∗s calculated from bulk properties is not a particularly
good predictor of the energies of boundaries at the surface. Even accepting that it can
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only predict the average energy of a stacking boundary at a surface, without being able
to distinguish between the two surfaces, the use of the bulk-derived data gives a reversal
energy of 0.58 meV rather than−0.96 meV. As the sign of this energy is of great physical
importance, as it could cause a change from cubic to hexagonal growth, these two methods
have produced significantly different results. However, in a system whereJ ∗ did not lie
so close to zero through partial cancellation of theJns, the analysis from the bulk results
might have been adequate.

With the approach given in this paper, a clear difference between the energy of a stacking
boundary on the (0001) and (0001̄) surfaces on silicon carbide has been found, a difference
which would affect the subsequent polytypic growth of the surfaces, producing cubic growth
on one surface and hexagonal growth on the other. There is much scope for further study
in this area, considering the effect of surface reconstructions or stacking boundaries in the
bulk close to the surface, and this work has shown the possible benefit of such study.
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